RLC-контур

Кроме как в механических системах, к примеру, в таких, маятник или же грузило на пружине, свободные колебания могут возникать также и в электрических цепях, самым простым примером чего может послужить последовательный RLC-контур, изображенный на рис. 2.2.1.

RLC-контур

Рисунок 2.2.1.Последовательный RLC-контур.

Находясь в положении 1, ключ К позволяет источнику зарядить конденсатор до некоего напряжения δ. Процесс разрядки ранее заряженного конденсатора провоцируется переключением ключа К во второе положение и происходит через катушку индуктивности L и резистор R. При выполнении определенных условий данный процесс может приобретать характер колебательного.

Для не содержащей внешнего источника тока замкнутой RLC-цепи закон Ома представляет из себя выражение:

JR+U=-LdJdt.

В данной формуле U=qC – напряжение на конденсаторе, q является обозначением заряда конденсатора, а J=dqdt – ток в цепи. Правой частью соотношения является выражение ЭДС самоиндукции катушки. В случае, когда заряд конденсатора q (t) берется как переменная величина, описывающее свободные колебания в RLC-контуре уравнение может быть приведено к виду:

q··+RLq·+1LCq=0.

Для начала рассмотрим такую ситуацию, в которой электромагнитные потери энергии в контуре равны нулю. В таком случае:

q··+ω02q=0.

Примем обозначение ω02=1LC. Данным чуть выше уравнением описывается процесс незатухающих свободных колебаний в LC- контуре. Внешне оно полностью эквивалентно уравнению свободных колебаний груза на пружине в условиях отсутствующих сил трения. Аналогичный свободным механическим и электрическим колебаниям процесс изображен на рисунке 2.2.2. На данной иллюстрации приводятся графики зависимости заряда смещения x (t) груза и q (t) конденсатора от положения равновесия, а также графики изменений тока J (t) и скорости груза υ (t) за период T=2πω0 колебаний.

RLC-контур

Рисунок 2.2.2.Аналогия процессов свободных электрических и механических колебаний.

Сделать заключение о некой связи между механическими и электрическими величинами нам позволяет сопоставление процессов в электрическом колебательном контуре и свободных колебаний груза на пружине. Данные аналогии показаны в таблице.

Электрические величины
Механические величины
Заряд конденсатора
q (t)
Координата
x(t)
Ток в цепи
J=dqdt
Скорость
ν=dxdt
Индуктивность
L
Масса
m
Величина, обратная электроемкости
1C
Жесткость
k
Напряжение на конденсаторе
U=qC
Упругая сила
kx
Энергия электрического поля конденсатора
q22C
Потенциальная энергия пружины
kx22
Магнитная энергия катушки
LI22
Кинетическая энергия
mν22
Магнитный поток
LI
Импульс

Свободные колебания

Определение 1

Свободные колебания в электрическом контуре носят название гармонических при условии отсутствия затухания.

Такие колебания происходят по закону:

q(t)=q0 cos(ωt+φ0).

Параметры L и C колебательного контура определяют лишь собственную частоту свободных колебаний:

ω0=1LC

Определение 2

«Начальными условиями», определяющими амплитуду q0 и начальную фазу φ0, называют тот способ, при помощи которого систему вывели из равновесия.

Свободные колебания
Пример 1

Затухающие колебания в электрическом контуре сравнимы с затухающими колебаниями груза на пружине в условиях существующего вязкого трения, при котором сила трения меняет свое значение прямо пропорционально скорости тела: Fтр=–βυ.

В данной формуле сопротивление R электрического контура аналогично коэффициенту β. Уравнение свободных колебаний в контуре при наличии затухания принимает следующий вид:

q··+2δq·+ω02q=0

Определение 3

Коэффициентом затухания называется физическая величина δ=R2L.

Следующая функция представляет собой решение приведенного выше дифференциального уравнения:

q(t)=q0e-δtcos (ωt+φ0),

Также она содержит описывающий затухание колебаний множитель exp (–δt). Скорость затухания зависит от электрического сопротивления R контура.

Определение 4

Интервал времени τ=1δ, в течение которого амплитуда колебаний уменьшается в e≈2,7 раза, называется временем затухания.

Понятие добротности Q колебательной системы: 

Q=πN=πτT,

где N является числом полных колебаний, которые совершает система за время затухания τ.

Определение 5

Любая добротность Q, относящаяся к колебательной системе, которая способна совершать свободные колебания, имеет следующее энергетическое определение: 

Q=2πЗапас энергии в колебательной системеПотеря энергии за 1 период

Добротность Q, принадлежащая RLC-контуру, выражают формулой: 

Q=1RLC

Добротность электрических контуров, которые применяются в радиотехнике, обычно порядка нескольких десятков и даже сотен.

Стоит обратить внимание на то, что собственная частота ω свободных колебаний в контуре с не самой высокой добротностью несколько уступает собственной частоте ω0 идеального контура с такими же значениями L и C. Однако при Q≥(5÷10) данным различием можно пренебречь.

Свободные колебания

Рисунок 2.2.4. Модель свободных колебаний в RLC-контуре.